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Abstract— With the development of susceptibility weighted
imaging (SWI) technology, cerebral microbleed (CMB) de-
tection is increasingly essential in cerebrovascular diseases
diagnosis and cognitive impairment assessment. Clinical CMB
detection is based on manual rating which is subjective and
time-consuming with limited reproducibility. In this paper, we
propose a computer-aided system for automatic detection of
CMBs from brain SWI images. Our approach detects the
CMBs within three stages: (i) candidates screening based on
intensity values (ii) compact 3D hierarchical features extraction
via a stacked convolutional Independent Subspace Analysis
(ISA) network (iii) false positive candidates removal with a
support vector machine (SVM) classifier based on the learned
representation features from ISA. Experimental results on 19
subjects (161 CMBs) achieve a high sensitivity of 89.44% with
an average of 7.7 and 0.9 false positives per subject and per
CMB, respectively, which validate the efficacy of our approach.

Index Terms— Cerebral microbleed, brain SWI, feature rep-
resentation, computer aided diagnosis

I. INTRODUCTION

Cerebral microbleeds (CMBs) are perivascular collection
of hemosiderin deposits in the brain. They can be visual-
ized as rounded lesions of small size and low intensity in
susceptibility weighted imaging (SWI) scans [1]. Clinically,
CMBs have served as the biomarker for radiologic diagnosis
of vessel diseases such as cerebral amyloid angiopathy.
Detecting the existence of CMBs can also help to predict
the future risk of symptomatic intracerebral hemorrhaging.
Additionally, recent years of clinical studies showed that
CMBs may have a direct effect on the neurological function
and lead to cognitive impairment such as dementia [2].

The clinical CMB labeling is based on visual inspection
and manual identification [3], which can be laborious, time-
consuming, and subjective with limited reproducibility. Au-
tomatic computer-aided detection systems are therefore valu-
able alternatives which would help to improve the efficiency
and reliability of the radiologic examination. However, auto-
matic detection is challenging due to the small size (with
a maximum diameter of 5 to 10 mm) and unpredictable
distribution of CMBs [1]. Furthermore, there exist various
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Fig. 1. Anatomical structure of true CMBs and CMB mimics in continuous
slices. (Red rectangle and green rectangle denote true CMB and CMB
mimic, respectively.)

CMB mimics (e.g., vein tissues, clacium and iron deposits)
carrying similar appearance as CMBs in SWI scans, which
confounds the detection procedure and increases the rate of
false positive (FP) results [4].

In the last decade, several computer-aided methods have
been developed for CMB detection by taking advantage
of various classification techniques. Ghafaryasal et al. [5]
sequentially applied two different classifiers to remove the
FPs based on geometrical information and local image de-
scriptors. Fazlollahi et al. [6] utilized a cascade of random
forest (RF) classifiers using Radon-based features. Barnes et
al. [7] used a support vector machine (SVM) classifier with
the shape and intensity information. Meanwhile, some other
studies also focused on exploring transformations for better
representation of CMB regions. Kuijf et al. [8] computed
the radial symmetry transform to intensify spherical regions
on 7.0T Magnetic Resonance (MR) images for CMB de-
tection. Bian et al. [9] performed a 2D fast radial symmetry
transform to screen initial candidates, followed by geometric
feature measurement. However, these methods are limited to
intensity-based, geometrical and hand-crafted features which
may not be sufficient to encode the complicated spatial
information of CMB anatomical structure. Fig. 1 illustrates
the spatial information which helps to distinguish CMBs
from CMB mimics during the rating procedure.

In this paper, we propose an automatic computer-aided
system for CMB detection from brain SWI images, which
takes advantage of the compact 3D hierarchical features
learned from a stacked convolutional Independent Subspace
Analysis (ISA) network. Different from previous methods,
our features are learned from the ISA network in an
unsupervised way, which helps to explore the underlying
discriminative characteristics of CMB regions with limited
training data. We validated the representation capability of
the learned hierarchical features on the test dataset containing
19 subjects with 161 CMBs. Experimental results achieved
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a high sensitivity of 89.44% with an average of 7.7 and 0.9
FPs per subject and per CMB, respectively.
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Fig. 2. The overview of the proposed approach for CMB detection. (White
and red rectangles denote candidates and detected true CMBs, respectively.)

II. METHOD

The proposed automatic computer-aided CMB detection
system consists of three stages: candidates screening, hi-
erarchical features extraction, and SVM classification with
the learned features (as shown in Fig. 2). In the first stage,
initial candidate regions are screened based on intensity
information. In the second stage, 3D hierarchical feature
representations of the candidate cubic regions are extracted
from an unsupervised stacked convolutional ISA network.
Finally, a SVM classifier is utilized to identify the true CMBs
based on the previously learned compact features.

A. Candidates Screening

The candidates screening stage includes two steps: initial
candidates selection with intensity thresholding and candi-
dates retrieval with a RF classifier. In the first step, we
generate a binary mask by globally thresholding the intensity
values to detect hypointense regions in the image. Here we
remove the impractically tiny or large regions by restricting
the volume size of the connected regions. In the second step,
a binary RF classifier is utilized to screen the previously
obtained candidates. The RF classifier is trained based on
the input of raw intensity values. As a result, this stage can
efficiently remove a large number of non-microbleed regions,
leaving the false positive candidates which can not be easily
identified relying only on low level features.

B. 3D Hierarchical Feature Extraction with ISA Network

Assuming that the sampled 3D image patches construct
a feature space, we aim to extract the discriminative char-
acteristics of the microbleed and non-microbleed regions
for CMB identification. Considering limited available data
tend to cause overfitting and degrade the performance of
supervised learning methods, we utilize the unsupervised
learning algorithm of ISA which extracts invariant features
for object detection by exploring the underlying subspace
structure of the data [10].

Specifically, the n-th (n = 1, ..., N) sample is denoted as
a 3D volume vn ∈ Rd1×d2×d3 centering at On. The volume
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Fig. 3. The stacked convolutional ISA architecture.

vn is then reshaped into the input vector xn. Given a basis
filter wi (i = 1, ..., I), the activation is represented as wi ·xn.
In ISA, several similar filters are grouped together to span
a subspace. Filters of different subspaces are restricted to
be independent whereas filters within each subspace are not
necessarily independent. Suppose that we aim to extract K
dimensional features. Let us denote Sk (k = 1, ...,K) as
the set of linear detectors that belong to the k-th subspace,
e.g., S1 = {w1, w2} means that filters w1 and w2 span the
first subspace. By introducing a non-linear function, each
subspace can generate one invariant feature and the activation
of the k-th subspace is represented as:

pk =

√ ∑
wi∈Sk

(wi · xn)2 (1)

Denoting the subspace structure of the ISA by the matrix
V = [vik]i=1,...,I,k=1,...K , where each entry vik ∈ {0, 1}
represents whether the filter wi is included in the k-th sub-
space, and denoting the filters matrix by W = [w1, ..., wI ],
ISA is formulated as the following optimization problem:

min

N∑
n=1

K∑
k=1

pk(xn;W,V ), s.t. WWT = I. (2)

In order to extract compact hierarchical features for CMB
detection, we apply the two-layer ISA network [11] which
borrows the concepts of convolution and stacking from deep
learning techniques. The stacked ISA architecture is shown
in Fig. 3. We initially sample relatively large image blocks.
A sliding box is then utilized to obtain overlapping smaller
subsamples which are forwarded to the 1st layer ISA. Next,
the responses of the subsamples are concatenated as the
input to the 2nd layer to extract hierarchical representations.
In order to efficiently train ISA, all the input vectors are
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pre-processed by principal component analysis (PCA) for
dimension reduction. As a result, compact 3D hierarchical
features are efficiently extracted from cubic regions in an
unsupervised way.

C. Classification with Compact 3D Features

The large number of false positive candidates generated
by the RF classifier are further removed by taking advantage
of the compact features learned from the ISA network. The
3D hierarchical feature vector rn is forwarded to the SVM
[12] classifier, as shown in Eq. 3.

argmin
w
||w||22 + α

N∑
n=1

max(0, 1− ynwTrn) (3)

where yn ∈ {+1,−1} is the label of the sample xn and α
controls the tradeoff between the weight decay term and the
hinge loss term.

III. EXPERIMENTS AND RESULTS

A. Dataset

Our dataset contains 44 patients with 25 subjects for
training and 19 subjects for testing. For each subject, a
SWI MR scan was performed on a 3.0T Philips Medical
System with a 3D spoiled gradient-echo sequence. Each
image was acquired with the parameters set as 0.45 × 0.45
mm2 in-plane resolution, 2 mm slice thickness, 1 mm slice
spacing, and a 230×230 mm2 field of view. Microbleeds in
the SWI volumes were visually rated by two experienced
neuroradiologists independently according to the standard
of Microbleed Anatomical Rating Scale [13]. A total of
615 CMBs (454 for training and 161 for testing) were
manually annotated as the ground truth in our experiments.
The intensity range of the image was normalized to [0, 1]
during the preprocessing procedure.

B. Experiments

In the candidates screening stage, the parameters were
determined on the training dataset based on the analysis
of intensity distribution of the microbleed regions. When
training the RF classifier, additional positive samples were
augmented by rotation and translation. Meanwhile, non-
CMB regions were randomly sampled from the whole brain
images. In the hierarchical features extraction stage, ISA
training samples were extracted from the whole dataset (both
training and testing), taking advantage of the unsupervised
property of the ISA network. Given a candidate location, an
image block of size 20× 20× 14 was sampled as the input
and the convolution stride was set to 4 in each direction.
The subspace size was set to 2 and the ISA network finally
extracted 200 features by combining the activations from
hierarchical layers.

C. Qualitative Results

The typical filters learned by the first layer of the ISA
network are shown in Fig. 4. There, each column represents
a 3D filter which is visualized as 2D filter maps tiled along
the third dimension. We can see that the filters can effectively

capture the rounded shape of the CMBs. Meanwhile, edge
detectors with various frequencies and orientations are also
learned from the ISA network.

Fig. 4. The typical learned filters of the 1st layer ISA.

In addition, the feature representations extracted from the
stacked ISA network are visualized by projecting them onto
a 2D plane using the t-SNE method [14]. As shown in
Fig. 5, the CMB samples and non-CMB samples are well
separated, which demonstrates the representation capability
of the compact 3D hierarchical features. Typical detection
results are illustrated in Fig. 6, which proves the effectiveness
of our method to identify CMBs.

CMB   samples 

Non-CMB samples 

Fig. 5. 2D t-SNE embedding of ISA features. (Red dots and blue circles
are CMB and non-CMB samples, respectively.)

Fig. 6. Examples of detection results: detected true CMBs (red rectangle),
removed false candidates (white rectangle), and FP (green rectangle).
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D. Quantitative Evaluation

We quantitatively evaluated the performance of our ap-
proach with the following 4 metrics: recall (R), precision
(P), number of FPs per subject (FPs/sub) and number of FPs
per CMB (FPs/CMB), which are defined as below:

R =
TP

TP + FN
, P =

TP

TP + FP
,

FPs/sub =
FP

M
, FPs/CMB =

FP

TP + FN
.

(4)

where TP, FP and FN denote the number of true-positive,
false-positive and false-negative detection results, respec-
tively. M is the number of testing subjects.

The parameters of the candidates screening stage were set
to preserve a high sensitivity (recall) during experiments.
As shown in Table I, the number of FPs are significantly
reduced throughout the pipeline. The final detection per-
formance achieved a recall of 89.44% with an average of
7.7 FPs per subject. Fig. 7 is the free-response receiver
operating characteristic (FROC) curve which describes how
the detection sensitivity changes with the number of FPs.
Generally, our approach can detect CMBs from one patient
within 40 seconds using a PC with a 3.20 GHz Inter(R) i5-
4570 CPU.

We compared our proposed approach with the previously
reported methods in Table II. Since the subjects containing
more CMBs tend to get more FPs, we utilized the metric of
FPs/CMB, which is not as sensitive to the various datasets as
FPs/sub, for a relatively fair comparison [9]. Results showed
that our algorithm outperformed the other methods by a large
margin with only an average of 0.9 FPs per CMB while
preserving a high sensitivity.

TABLE I
EXPERIMENTAL RESULTS

Steps Recall Precision FPs/sub FPs/CMB

Thresholding 1 0.0105 807 95
RF retrieval 0.9441 0.0403 190 23
SVM classification 0.8944 0.4966 7.7 0.9
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Fig. 7. FROC curve of our proposed approach.

IV. CONCLUSION

In this paper, we propose a computer-aided system to
automatically detect CMBs from brain SWI images with the

TABLE II
COMPARISON OF PERFORMANCE AMONG ALGORITHMS

Methods Recall FPs/sub FPs/CMB

Ghafaryasal et. al [5] 0.909 4.1 1.8
Fazlollahi et. al [6] 0.920 16.8 6.7
Barnes et. al [7] 0.817 107.5 5.4
Kuijf et. al [8] 0.712 17.2 4.7
Bian et. al [9] 0.865 44.9 1.5
Ours 0.894 7.7 0.9

high sensitivity and low false positive rate. The 3D hierar-
chical features are extracted from a stacked convolutional
ISA network for discriminative classification. Experimental
results on the dataset containing 19 elderly subjects (161
CMBs) validated the efficacy of our method.
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